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1 Bounds on Integral Operators (cont.)

1.1 Proof of the weak and strong type properties

Last time, we were proving the following theorem:

Theorem 1.1. Let 1 ≤ p < ∞ and c > 0. Assume that [K(x, ·)]q ≤ C for µ-a.e. x ∈ X
and [K(·, w)]w ≤ C for ν-a.e. y ∈ Y .

1. If 1 ≤ p <∞, Lp(ν) ⊆ F .

2. If 1 < p < r <∞, then there exist B1 > 0 and Bp > 0 such that [Tf ]q ≤ B1‖f‖1 and
‖Tf‖r ≤ CBp‖f‖p, which means T is weak type (1, q) and strong type (p, r), provided
that 1/r + 1 = 1/p+ 1/q.

Proof. It remains to show the second conclusion. We have fixed f such that ‖f‖p = 1. We
have already obtained the following useful identities:∫

X
|K1(x, y)| dν(y),

∫
K
|K1(x, y)| dν(x) ≤ CA

1−q

q − 1

‖T2f‖ ≤ Aq/r
(
cr

q

)1/p

,
1

p
+

1

p′
= 1.

We chose A such that Aq/r(cr/q)1/p
′

= α/2. These give us

λT2f (α/2) = 0.

So
λTf (α) ≤ λT1f (α/2) + λT2f (α/2) = λT1f (α/2).

Now apply the following observation to h = T1f :∫
|h|p dν ≥

∫
{|h|>α/2}

|h|p dν ≥
(α

2

)p
λh(α/2) =⇒ λh(α/2) ≤

(α
2

)−p
‖h‖pp.
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We get

λTf (α) ≤
(α

2

)−p
‖T1f‖pp

≤
(α

2

)−p(
c
A1−q

q − 1

)p
=
(α

2

)−p( c

q − 1
αr/q

[
1

2

( q
cr

)1/p′]r/q)(1−q)p

= α−p+r/q(1−q)pC(q, p).

Now we note that

−p+ r/q(1− q)p = p((1/q − 1)− 1) = p(r(1/r − 1/p)− 1) = −r/p.

So, by homogeneity,
αrλTf (α) ≤ C(q, p)‖f‖rp.

In particular, when p = 1, then r = q, and we get that

αqλTf (α) ≤ C(q, 1)‖f‖qq.

That is, T is weak type (1, q).
We next need to find (p1, r1) such that T is weak type (p1, r1), where q ≥ 1 and p1 ≤ r1.

Choose p1 ∈ (p,∞) close enough to p. Let t ∈ (0, 1) be such that

1

p
=

1− t
1

+
t

p1
.

Define r1 by
1

r
=

1− t
q

+
t

r1
.

Since p is close to p1, r is close to r1. By the definition of r1,r1 < r. We have

αr1λTf (α) ≤ C(q, p1)‖f‖r1p1 .

This means that T is weak type (p1, r1). Since T is also weak type (1, q) the Marcinkiewicz
interpolation theorem gives us that T is strong type (p, r).

1.2 Preliminaries for Fourier analysis

Notation: We will assume that n ≥ 1 is a natural number. If x = (x1, . . . , xn), (y1, . . . , yn) ∈
Rn, then

x · y =
n∑
i=1

xiyi, ‖x‖2 = x · x.
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If α ∈ Nn, then

|α| =
n∑
i=1

αi, α! =
n∏
i=1

(αi!).

We will also write

xα = (xα1
1 , . . . , xαn

n ), ∂αx =
∂|α|

∂xα
=

∂α1

∂xα1
1

· · · ∂
αn

∂xαn
1

.

With this notation, the Taylor expansion is

f(x) =
∑
|α|≤k

1

α!

∂|α|f

∂xα
(x0)(x− x0)α +Rk(x), where lim

x tox0

Rk(x)

|x− x0|k
= 0.

Define

η(t) =

{
e−1/t t > 0

0 t ≤ 0.

We have η ∈ C∞(R), as
xn

ex
x→∞−−−→ 0

for each n. By induction, we can show that η(k)(0) = 0 for all k ≥ 1.
For x ∈ Rn, set

ρ(x) = η(1− ‖x‖2) =

{
e1/(‖x‖

2−1) ‖x‖ < 1

0 ‖x‖ > 1.

Then supp(ρ) = B1(0), ρ ∈ C∞, ρ > 0, and ρ(−x) = x.
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